中科白癜风医院助力健康中国 http://www.bdfzkyy.com/
今天我们再来陪孩子玩一下古氏积木,今天我们介绍的是一种多种组合都一样的新玩法,这个新玩法是什么呢?
游戏的材料与规划:
古氏积木
设计要点:积木的颜色就是它的机关,孩子可以通过视觉来识别数量。同时,这些积木看不出来是否分段,孩子无法通过清点的方式得到数量。你也可以同时提供吸管等材料,用笔画出1厘米,分段做记号,这样就一目了然了。
游戏基础活动:
任由孩子自己选择一块古氏积木来指定数量。
然后让孩子选择两块积木,拼接起来能够与预先选的那块一样长。
将两块拼接起来对比一下就可以知道是否正确,如果不正确,就重新去选。
保持指定的积木,让孩子去寻找是否还有其他的拼接可能性。
让孩子将所有能够拼接起来的两块古氏积木都找出来,然后不断地进行对比。
游戏扩展与延伸:
鼓励孩子用3块古氏积木来拼接成与指定的积木同样的长度。
如果事先指定的古氏积木长度大于10,就要鼓励孩子多用几块,而不是局限在2块或3块上。
古氏积木还有专门的橡皮擦,这样他们可以把数字记录在积木上,事后再擦掉。比如,如果指定长度是9的古氏积木,孩子找到了4和5的积木,就可以做一个记号。当然,也可以采用其他的材料做记号,并在事后擦掉,同样,他们也可以用写数字来替代对视觉颜色的依赖。
游戏中该学到的概念和技能:
部分与整体的关系。
加法的次序变换不影响总和的规律。在这个活动中,无论3与6的积木前后次序如何,最后都会拼接成与9的那个积木一样长。
任意数字接着数下去或者倒数。
在活动初期,孩子常用的策略就是尝试、再尝试直到正确为止,如同他们面对任何类似的挑战活动一样。这样的方式是可以接受的,这个活动最大的价值就是当孩子开始预测,而不是立刻就去进行对比的时候,大人要鼓励他们进行思考:
“你看你用了4和5,最后组合成了9,如果开始的数字是3呢,你需要找到几才能够得到9呢?”一旦他们开始思索,就能回答你他们是怎么想的,想的过程是怎样的。
“看一下9旁边的4,还有比4长或者短的其他积木吗?你怎么知道的,你觉得那会是什么数呢?”
“你用2和5组成了7,如果我拿走了5,又给了你一个2,还是要组合成7,你需要什么积木呢?你怎么知道的?”
“如果有一个是3,那么用什么可以组合出8呢?太好了,将那两个积木拼接一下,看是不是对的。”
“你把一个5的积木和另外一个5的积木组合在一起了,是不是太大了一点,用什么来替换5呢?你怎么知道的?”
通过上面游戏,孩子可以用视觉识别积木的数量,可以帮孩子可以了解到加法这个数学概念。这样好玩的游戏,跟孩子一起来玩玩吧。